
CPS311 - COMPUTER ORGANIZATION

The Same Program Written Sequentially, and Using Various Parallelization Strategies

/* This program counts the total number of factors of a given number, starting at 1
 * and up to but not including the number itself.
 *
 * $Smake: g++ wtime.o -lrt -o %F %f
 *
 * Copyright (c) 2013 - Russell C. Bjork
 */
/* SEQUENTIAL VERSION - ALL PROCESSING IS DONE BY THE CPU */
using namespace std;
#include <iostream>
#include <iomanip>
#include "wtime.h"
unsigned long number;
unsigned int factorCount;

/* Count the factors of a number within a certain range.
 *
 * Parameters: number - the number to factor
 * lo - the first number in the range
 * hi - the first number _not_ in the range - i.e. the factors
 * in the range [lo .. hi - 1]
 * Returns: the count of the factors of numbers in this range
 */
int countFactors(long number, long lo, long hi)
{

int count = 0;
for (long i = lo; i < hi; i ++)

if (number % i == 0)
count ++;

return count;
}
int main()
{

cout << "Number for which to count factors? ";
cin >> number;
if (cin.good())
{

double start = wtime();
int count = countFactors(number, 1, number);
double end = wtime();
cout << number << " has " << count << " factor(s) less than itself." << endl;
cout << "Computation took " << setprecision(4) << end-start <<  

" seconds." << endl;
return 0;

}
else
{

cerr << "Malformed number" << endl;
return 1;

 }
}

�1

/* COMPUTATION PARALLELIZED USING PTHREADS */

(Only main program and changes compared to the sequential version are shown. countFactors()
is the same as sequential)
....
#include <pthread.h>
....
// Data and code for the threads
struct thread_data
{
 pthread_t tid;
 long lo, hi;
 int count;
} threadData1, threadData2;

void * threadCode(void * arg)
{
 thread_data * data = (thread_data *) arg;
 data -> count = countFactors(number, data -> lo, data -> hi);
}
....
int main()
{

cout << "Number for which to count factors? ";
cin >> number;
if (cin.good())
{

double start = wtime();
// Create the data that will be used by the two threads
threadData1.lo = 1; threadData1.hi = number/2;
threadData2.lo = number/2; threadData2.hi = number;
// Start two threads
pthread_create(& threadData1.tid, NULL, threadCode, & threadData1);
pthread_create(& threadData2.tid, NULL, threadCode, & threadData2);
// Wait for both to complete
pthread_join(threadData1.tid, NULL);
pthread_join(threadData2.tid, NULL);
// Combine counts calculated by the two threads
int count = threadData1.count + threadData2.count;
double end = wtime();
cout << number << " has " << count << " factor(s) less than itself." << endl;
cout << "Computation took " << setprecision(4) << end-start <<  

 "seconds." << endl;
return 0;

}
else
{

cerr << "Malformed number" << endl;
return 1;

 }
}

Compilation command on linux is:
g++ -pthread wtime.o -lrt -o countFactors_pthreads countFactors_pthreads.cc  

�2

/* COMPUTATION PARALLELIZED USING OMP */

(Only countFactors() and changes compared to the sequential version are shown. Main program
is the same as sequential)

....

#include <omp.h>

....

/* Count the factors of a number within a certain range.
 *
 * Parameters: number - the number to factor
 * lo - the first number in the range
 * hi - the first number _not_ in the range - i.e. the factors
 * in the range [lo .. hi - 1]
 * Returns: the count of the factors of numbers in this range
 */
int countFactors(long number, long lo, long hi)
{

int count = 0;
 #pragma omp parallel for default(shared) reduction(+:count)

for (long i = lo; i < hi; i ++)
if (number % i == 0)

count ++;
return count;

}

Compilation command on linux is:
g++ -fopenmp wtime.o -lrt -o countFactors_omp countFactors_omp.cc

�3

/* This program counts the total number of factors of a given number, starting at 1
 * and up to but not including the number itself.
 *
 * $Smake: nvcc -arch=sm_30 wtime.o -lrt -o %F %f
 *
 * Copyright (c) 2013, 2015 - Russell C. Bjork
 */

/* COMPUTATION PARALLELIZED USING CUDA */

using namespace std;
#include <iostream>
#include <iomanip>
#include <stdio.h>
#include <cuda_runtime.h>
#include "wtime.h"

unsigned long number;
unsigned int factorCount;

// The number of threads that will be used
#define THREADS 1024

/* This function is executed by the GPU's. It count the factors of a number within a
 * subrange (designated by local variables lo and hi, where lo is the first value in
 * the subrange to be considered and hi is the first value _not_ to be considered.)
 * Each thread calculates its lo and hi values from its index. The partial counts are
 * stored in an array on the device and are then copied back to the CPU and summed to
 * the final answer.
 *
 * Parameter: number - the number whose factors are being counted
 * Parameter: partialCount - the array of partial counts - each thread fills in the
 * value corresponding to its index
 *
 */
__global__
void countFactors(unsigned long number, unsigned int * partialCount)
{
 unsigned long divisorsPerThread = (long) ceil(((double) number) / THREADS);
 unsigned long lo = (unsigned long) (threadIdx.x * divisorsPerThread);
 unsigned long hi = lo + divisorsPerThread;
 if (lo == 0)
 lo = 1;
 if (hi > number)
 hi = number;

 unsigned int threadPartialCount = 0;
 for (long i = lo; i < hi; i ++)
 if (number % i == 0)
 threadPartialCount ++;

 // Save the partial count found by this thread in the array on the device
 partialCount[threadIdx.x] = threadPartialCount;
}

�4

int main()
{
 unsigned long number;
 cout << "Number for which to count factors? ";
 cin >> number;
 if (cin.good())
 {
 // Note the time at which processing started
 double start = wtime();

 // Variable to hold status of GPU operations.
 cudaError_t err = cudaSuccess;

 // Allocate memory on the device for the partial counts
 unsigned int * d_partialCount = NULL;
 err = cudaMalloc((void **) & d_partialCount, THREADS * sizeof(unsigned int));
 if (err != cudaSuccess)
 {
 fprintf(stderr, "Failed to allocate array on device (error code %s): \n",
 cudaGetErrorString(err));
 exit(1);
 }

 // Start the parallel kernels on the GPU
 countFactors <<<1, THREADS >>>(number, d_partialCount);

 // Copy result back from GPU when all threads have finished
 unsigned int partialCount[THREADS];
 err = cudaMemcpy(partialCount, d_partialCount, THREADS * sizeof(unsigned int),
 cudaMemcpyDeviceToHost);
 if (err != cudaSuccess)
 {
 fprintf(stderr, "Failed to copy array from device (error code %s): \n",
 cudaGetErrorString(err));
 exit(1);
 }

 // Reduce by summing the partial counts
 factorCount = 0;
 for (int i = 0; i < THREADS; i ++)
 factorCount += partialCount[i];

 // Note the time when processing completed
 double end = wtime();

 // Output the results
 cout << number << " has " << factorCount << " factor(s) less than itself." << endl;
 cout << "Computation took " << setprecision(4) << end-start << " seconds." << endl;
 return 0;
 }
 else
 {
 cerr << "Malformed number" << endl;
 return 1;
 }
}

Compilation command on linux is:
nvcc -arch=sm_30 wtime.o -lrt -o countFactors_cuda countFactors_cuda.cu

�5

